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A proposal has been made [1, 2, 3] for a conformal field theory in four
dimensions (CFT4), in which the twistor representation of quantum fields plays
an essential role. According to this proposal, a scattering amplitude could arise
in the first instance as associated with a specific complex manifold X (bearing
a specified relationship to flat twistor space); to obtain a physically meaningful
amplitude a summation of these amplitudes would be performed over (a class of)
such manifolds. It was noted that physically meaningful amplitudes (for theories
of interacting massless fields in Minkowski space-time) have already appeared in
twistor theory. They have arisen in the formalism of twistor diagrams [4, 5, 6] —
compact contour integrals in products of twistor spaces, with a rough analogy
to Feynman diagrams, but with certain features similar to the dual diagrams
of bosonic string theory. It was therefore suggested that there might exist a
direct connection between the CFT4 picture and the twistor diagram formalism.
This speculation is here strengthened by noting an analogy between standard
two-dimensional string theory and a specific twistor-diagrammatic calculation,
suggesting that the integration of twistor diagrams could be interpreted as a
summation over complex manifolds.

We consider the derivation of the Veneziano amplitude for four open strings
of spin 0. According to the standard theory [7, page 49], the amplitude as-
sociated with one string is determined by mapping that string conformally
onto a disc with four boundary points removed, or equivalently, the upper-half-
plane with four real points removed. We shall use the latter formulation. The
Veneziano amplitude then results from summing over the amplitudes associated
with all such punctured half-planes.

Such half-planes can be labelled by four real points x1, x2, x3, x4. But two
such half-planes are conformally equivalent if these parameters have the same
cross-ratio. Thus to count each manifold just once, the summation should run
only over values of the cross-ratio. This can be achieved by fixing x1, x2, x4 say
as 0, 1,∞ (a ‘gauge’) and the summing over x2. More symmetrically we may
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formally sum over all four parameters and then divide by the infinite volume
of the SL2R ‘gauge group’. The formalism proposed here has the symmetry of
the latter approach, but avoids infinities by replacing the original non-compact
integral by the compact integration of a projective form in (CP 1)4. This requires
a number of steps: (1) re-interpreting the original real integral as the integration
over a real path of a complex form (2) using projective spinors (appropriate in
any case because this puts ∞ on an equal footing with other points) (3) using a
Pochhammer contour to replace the integration into branch points by compact
contour integration round the branch points (4) restoring the symmetry by
writing this as an integral in (CP 1)4.

The integral for the amplitude corresponding to the cyclic ordering (1234)
(using the ‘gauge’ choice given above) is∫ 1

0

dx2 | x2 |k1.k2 | 1− x2 |k2.k3

This becomes (on following these four steps) the spinor integral

(2πi)−2

∮
Dz1 ∧Dz2 ∧Dz3 ∧Dz4 [(z1.z3)(z2.z4)]

−k1.k3

× [(z1.z2)(z3.z4)]
−k1.k2

2i sinπ(k1.k2)
[(z1.z4)(z2.z3)]

−k1.k4

2i sinπ(k1.k4)

which we write diagrammatically as
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The ‘tachyonic’ condition m2 = −k1.k2 − k1.k3 − k1.k4 = −2 is equivalent to
this projective integral being well-defined.

This integral may be considered as composed of singular ‘propagator’ factors
of form

[(z1.z2)(z3.z4)]
−k1.k2

2i sinπ(ki.k2)

and numerator factors (actually periods of these singular factors) of form

[(z1.z3)(z2.z4)]
−k1.k3

For general values of momenta this distinction is artificial, but when the expo-
nents are integers (the case of interest when studying the twistor analogue) the
‘propagators’ become logarithmic and the ‘numerators’ non-singular.
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If the external states have SU(n) indices (‘quark-antiquark charge’ in the
original bosonic string theory) then a further coefficient must be specified,
namely tr(Λ1Λ2Λ3Λ4), where Λi is the SU(n) matrix on the ith string. The
complete amplitude is then given by the sum:
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tr(Λ1Λ3Λ2Λ4) + tr(Λ1Λ2Λ4Λ3)

+ tr(Λ1Λ2Λ3Λ4) (1)
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We now turn attention to field theory in Minkowski space, in fact to pure
SU(2) gauge field scattering. The reason for this choice of process is that it turns
out to be in a certain sense the simplest to describe as a twistor integral. We
shall observe a remarkable parallel to this string-theoretic formula which emerges
from this twistorial re-description. To do this we compute this amplitude by
standard Feynman rules: this amounts to summing
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where the ith state is defined by potential Φa
i and SU(2) matrix Λi. It turns

out that the scattering demonstrates ‘helicity conservation’, with left and right
helicity parts interacting independently. Hence we lose nothing by taking Φa

1 ,Φa
2

to be self-dual, i.e.with 2-spinor representations ΦAA′

1 , ΦAA′

1 satisfying

∇BA′ΦAA′

1 = 0, ∇BA′ΦAA′

2 = 0

and the other fields likewise to be anti-self-dual: i.e.

∇B′AΦAA′

3 = 0, ∇B′AΦAA′

4 = 0.

Then the fields are given in 2-spinor form by φA′B′

1 (x), φA′B′

2 (x), φAB
3 (x), φAB

4 (x),
with Fourier transforms φ̃A′B′

1 (k1) etc. The general case, in which the interacting
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fields are not eigenstates of helicity, can be recovered by linearity. The individ-
ual Feynman diagrams are gauge-dependent but their sum (by a straightforward
but non-trivial computation) may be expressed in the manifestly gauge-invariant
form:

tr(Λ1Λ3Λ2Λ4)
∫

d4k1 . . . d4k4
φ̃A′B′

1 (k1)φ̃AB
3 (k3)φ̃2A′B′(k2)φ̃4AB(k4)

(k1 + k3)2 (k1 + k4)2

+ tr(Λ1Λ3Λ4Λ2)
∫

d4k1 . . . d4k4
φ̃A′B′

1 (k1)φ̃AB
2 (k2)φ̃3A′B′(k3)φ̃4AB(k4)

(k1 + k2)2 (k1 + k3)2

+ tr(Λ1Λ2Λ3Λ4)
∫

d4k1 . . . d4k4
φ̃A′B′

1 (k1)φ̃AB
2 (k2)φ̃3A′B′(k3)φ̃4AB(k4)

(k1 + k2)2 (k1 + k4)2

Using standard translation techniques (see for instance [8]), each of these
terms may be translated into a twistor diagram, yielding the sum:

tr(Λ1Λ3Λ2Λ4)
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The definition of these diagrams is specified elsewhere [4, 5, 6] but a brief
description can be given. The notation is like Feynman diagram notation, in that
all the vertices represent variables to be integrated out. But these variables are
twistors or dual twistors (corresponding to black or white vertices respectively)
and the integration is compact contour integration. The external fields appear
in the standard twistor representation, i.e. as first cohomology group elements.
The ‘propagator’ lines connecting the vertices are simple singular factors. The
whole structure is manifestly finite and is also manifestly conformally invariant.
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However, the aspect of the integration that concerns us here is the analogy with
the sum of spinor integrals (1).

The essential point is that in each diagram the form to be integrated is
simply the product of the external fields and a natural volume form on the total
space. The contour over which it is to be integrated is dictated by the presence
of lines labelled (−1). These lines define logarithmic factors in the integral,
and the contour can be regarded as a higher-dimensional Pochhammer contour
which winds round the branch curves they define. Note that the corresponding
‘numerators’ are just unity in this case, and also that these logarithmic factors
connect the external states in the same cyclic order as in the trace yielding the
SU(2) coefficient. Thus the sum of the twistor diagrams is of just the same
form as the sum (1) of spinor integrals. We know that these spinor integrals
can be derived as integrals over a parameter space of amplitudes arising from
a conformal field theory. This suggests that it may be possible to derive the
analogous twistor integral from a CFT4 principle, instead of producing it by
translation from field theory.

The pure SU(2) gauge field scattering integral is special because only for it
does the twistor diagram representation reduce to the integration of a volume
form, making the analogy with string theory particularly close. To describe
the interaction of fields with spin other than 1, one must integrate certain very
simple rational functions rather than pure volume. However, there seems no
reason why a generalisation encompassing this feature could not follow from a
CFT4 principle.
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Note added in 2006: This article was published in The interface of mathematics
and particle physics, eds. D. G. Quillen, G. B. Segal, and Tsou S. T., (Clarendon
Press, Oxford, 1990). The original LATEX file has been processed to create this
.pdf file. See http://www.twistordiagrams.org.uk for further references.
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